
The Jahn-Teller effect in icosahedral symmetry: extension of Ham factors in strongly coupled

systems

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1995 J. Phys.: Condens. Matter 7 3247

(http://iopscience.iop.org/0953-8984/7/17/008)

Download details:

IP Address: 171.66.16.179

The article was downloaded on 13/05/2010 at 13:00

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/7/17
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


I .  Phys.: Condens. Matter 7 (1995) 3247-3269. Printed in the UK 

The Jahn-Teller effect in icosahedral symmetry: extension 
of Ham factors in strongly coupled systems 

J P Cullerne, M N Angelova and M C M O’Brien. 
Oxford University D e p m e n t  of Physics Theoretical Physics, I Keble Road, Oxford 0x1 3NP. 
UK 

Received 26 Januaty 1995 

Abstract. We extend the standard definition of reduction factors (Ham factors) in  strongly 
coupled Jahn-Teller (m) systems. Our aim is to cover linear IT systems in which the vibronic 
ground state at strong coupling is in close proximity in energy lo low-lying excited states 
belonging to singlet and non-uivial irreducible representations of the IT cenve. Such a stmcture 
of low-lying vibronic states is present in Ihe linear IT systems of the icosahedral orbital quartet 
and quintet, G md H. We calculate all the standard reduction factors as well I extended matrix 
elements. for the icosahedral Systems G 0 g, G @ h and H 0 fi. We d c u l x e  the matrix of 
Ham factors needed to handle the extra multiplicity of an H operator in an H state A dinct 
group-theoretic31 approach which explains the origins of various features of our analysis is 
included. 

1. Introduction 

The Hamiltonian for a Jahn-Teller (JT) system has the full symmetry of the JT centre 
(under simultaneous transformation of both electronic and vibrational operators), so the exact 
eigenstates of the Hamiltonian must belong to the irreducible representations (irreps) of the 
symmetry group of the original symmetrical configuration and must have the corresponding 
degeneracies. In particular, the ground state is always found to be a vibronic multiplet 
with the same degeneracy as the original uncoupled electronic basis, whatever the strength 
of the JT coupling. Thus, so long as excited vibronic states are far away in energy from 
the ground state relative to the size of any perturbation that may be applied, the properties 
of this vibronic ground state are formally identical, so far as symmetry considerations are 
concerned, with those of the uncoupled electronic orbital in the symmetry of the JT centre. 
This continuity of the symmetry properties has been encapsulated in the definition and use 
of reduction or Ham factors [ I ,  21 which were simply defined as the ratio of the effect 
of an operator, such as external stress, within the ground vibronic state to its effect in the 
original uncoupled electronic state. This simple and powerful concept, which is a most 
useful meeting point between the results of experiment and theory, has been very widely 
used, but it has had to be extended to cover systems that do not quite satisfy the above 
assumptions. 

The principal generalization that we are concemed with here deals with the lowest 
vibronic state when it is so closely approached by others that the effect of a perturbation 
in coupling these states to each other cannot be neglected compared with its effect within 
the ground state itself. One way that such a situation can occur is when. under strong JT 
coupling, there are more equivalent JT distortions than the multiplicity of the parent state. 
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A familiar example is that of a T@ r system in cubic symmetry. Here an electronic triplet, 
such as a p state. has a JT coupling to a threefold-degenerate set of vibrations. The linear 
coupling gives rise to four equivalent distortions of minimal energy, typically along the four 
(1  11) directions. The four linear combinations of these distorted states combine to produce 
a ground-state vibronic T triplet with an A singlet close above it. If stress is applied along 
a (1 11) direction l h i s  will reduce the energy of one of the distortions relative to the other 
three. and this effect may be large enough to rearrange the vibronic states. Under these 
circumstances it is not sufficient to know the Ham factor within the ground vibronic state; 
one must also know the cross terms in che perturbation. This is the situation that can arise 
in a more complicated way in some systems under icosahedral symmetry, and in this paper 
we attempt to do a complete calculation of all the on- and off-diagonal Ham factors that 
might be needed. We have tried to set out the calculated numbers and their positions in the 
matrices so that they are immediately ready for use. 

Of the original papers in which Ham factors were defined, the first [ I ]  concerned the 
T @ E system. Here the number of minima, three, is the same as the multiplicity of the 
electronic state, so the extension is not required. The second 121 concerned E c3 E where 
there is a continuum of minima, and the low vibronic states are always separated by at least 
a pseudo-rotational energy. However, in E @ E a higher-order effect often comes into play, 
producing three equivalent minima which give rise to a singlet state close above the ground 
doublet, which can be coupled by stress. 

The second generalization we approach is what happens when a particular irrep appears 
twice in a symmetric square. This problem is new, because such an event does not occur 
in a smaller symmetry group than that of the icosahedron. We shall show that the single 
Ham factor must be replaced by a 2 x 2 matrix, and we shall discuss how such a matrix 
can be most usefully defined, and find its entries. 

The linear IT interactions in the icosahedral orbital quartet and quintet, exhibit all 
the features discussed above. The vibronic ground states at strong coupling are in close 
proximity in energy to low-lying excited states belonging to singlet and non-trivial irreps. 
We can see this by following a similar argument to that of [3]. Tunnelling between the 
stable minima of the lowest adiabatic potential energy surface (LAPES) splits the ground 
state into icosahedral irreducible spaces separated i n  energy by a tunnelling splitting, A, of 
the form 

J P Cullerne et a1 

A = constant x K exp( - ITP)  (1) 

where K is the linear IT coupling and 1, is a tunnelling intcgral. The exact value of 
IT has been the subject of much debate and this is a problem that has still not been 
satisfactorily resolved for dimensions higher than one [4, 5,  6, 7, 81. However, the form 
of A is independent of the choice of definition of IT.  Since IT is always positive, we see 
that at strong coupling (i.e. large K) the splitting between the ground and excited levels 
is small. In this case, excited vibronic states are no longer far away in energy from the 
ground state relative to the size of any perturbation that may be applied. Details of this 
have been given in [91, of which chis paper is essentially a continuation. However, in this 
work the reader will find that the notation has had to be somewhat modified to deal with 
the increased complexity of the problem. 

In the following we begin, in sections 2 and 3, by laying down some group-theoretical 
concepts which will explain the origins of various important features of the subsequent 
analysis. In sections 4.5 and 6, we present the results of calculating the allowed perturbation 
operators within the lowest vibronic states of the icosahedral systems G @ g, G @ h and 
H @ g. The appendix contains all the further numbers needed for the use of these results. 
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2. Effective Hamiltonian 

2.1. Jahn-Teller motrices 

JT interactions are described by the Hamiltonian H”, 

where Q: are the rr-active vibrational coordinates and V,̂  are irreducible tensor operators 
acting on the electronic states. Both the operators and the normal coordinates transform 
according to the i m p s  A of the icosahedral group I and h (A = 1, 2, . . . , 1111) denotes 
the basis functions of A .  

The matrix elements of the Hamiltonian H” are calculated between the uncoupled 
electronic states uf(r, Qo)(i = 1, 2, . , , , Irl) which transform as the real irrep r of the 
icosahedral group and hence 

The JT-aCtk vibrations are determined by those real irreps A which belong to the 
symmetric Kronecker square [r @ r] and are not the totally symmetric irrep A I  of the 
icosahedral group. In general, for non-simply reducible groups the symmetric square [r@r] 
may contain A more than once but this Kronecker multiplicity for the icosahedral symmetry 
only occurs when r is the quintet H. 

Using the Wigner-Eckart theorem, the matrix elements HF can be written in the form 

where the reduced matrix elements ( ~ ~ l l V ~ l l i d ~ ) ~  do not depend on the particular choice of 
the basis functions but on the physical nature and action ofthe operator V A .  The multiplicity 
index p distinguishes between the repeating i m p s  appearing in the Kronecker product and 
will be omitted for simplicity in cases with no multiplicity. The Clebsch-Gordan coefficients 
( A h .  r j l p r i )  describe the coupling and the geometry of the system. Since the irreps r 
and A are real, real basis functions can always be chosen and hence the Clebsch-Gordan 
coefficients are real numbers. 

Clebsch-Gordan coefficients play a significant r6le in the JT analysis and i t  is useful to 
summarize here some of their properties. For fixed values of A, h and p the Clebsch-Gordan 
coefficients ( p r i ( A h ,  rj)  can be arranged into square matrices U r ( p A h )  of dimension IF\. 
Each matrix is determined by the triad ( p A h )  and represents the coupling of the electronic 
states by a particular active vibration Q:. Hence the matrix of the Jahn-Teller Hamiltonian 
can be written as a linear combination of Clebsch-Gordan matrices U r ( p A h ) :  

The matrices U‘(pAh) are symmetric as A belongs to the symmetric square [r @ r]. 
They are also normalized and represent symmetric second-rank tensors Ur(pAh) which 
characterize the coupling. 

For simplicity of notation throughout the paper. we haw dropped the dsstinction between Ib and I, and hence 
between even and odd irreducible represenrations. 
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The set of Clebsch-Gordan coefficients (AA, r j l p r i )  are related by symmetry relationst 
to the set of coefficients (ri, rjlpAA). These latter belong to the matrix Urer which 
is a square orthogonal matrix (unitary if the basis is complex) of dimension lrI2. The 
standard orthogonality relations of Clebsch-Gordan coefficients [ 101 follow directly from 
the orthogonality of the rows and columns of the matrix Urer. For a fixed value of the triad 
( p A h )  the coefficients (ri, r j lpAA)  form a column of the matrix UrBr. Each column can 
be further rearranged into a square matrix of dimension lrl and when normalized represents 
Ur(pAh). Hence the Clebsch-Gordan coefficients used in this paper obey the following 
orthogonality relations; 

C(priiAn. rj)(A’n’, rjip’ri) = SA.A,JA.~,S~,~. (6) 

which are a particular case of the orthogonality relations between the columns of the 
Clebsah-Gordan matrix Urer. 

The interactions involving states transforming as the quintet H are more complicated as 
they include a Kronecker multiplicity. To evaluate these interactions, we have to distinguish 
the two irreps H appearing in the symmetric square [H@H]. This is usually done by putting 
certain restrictions on the H matrices. Boyle and Oigo [ 111 suggested the use of spherical 
operators for resolving the H multiplicity. It is particularly appropriate to consider the 
parentage of H with the representations of the spherical group SO(3) since our electronic 
and nuclear functions are already involved in such relationships [9]. Hence one irrep H 
can be derived from J = 2, the other from J = 4 and the tensor operators Vf=V;H 
can be written in a symmetry-adapted S0(3)3 basis as linear combinations of operators 
transforming as spherical harmonics. The action of the operators V:” and \yH on the 
electronic states is different and hence we can handle the multiplicity in this way. In what 
follows we shall replace the multiplicity index p ( p  = 1, 2) with the parentage J ( J  = 2. 4). 

i . j  

2 .2 .  The effective Hamiltonian within a G state 

Within a set of four real basis states, the matrix elements of any real operator can be written 
as a linear combination of ten real matrices. We choose these matrices so that the direct 
effect of external perturbations, and of interactions involving other dynamical operators, on 
the electronic orbital quartet may be represented in a general way by adding to the vibronic 
Hamiltonian an operator 

Here the aG, pGs and y0s are functions of the components of the external perturbations 
(strain, magnetic field, etc); orG is symmetric under icosahedral transformations of these 
components, the pps belong to the irrep G, and the $s belong to the irrep H. Thus OG. as 
given by equation (7), describes the effect that external perturbations would have in shifting 
or splitting the electronic energy for the static, pelfectly icosahedral environment when JT 
effects are ignored. 

These matrices are then largely determined by symmetry, and can be set up using the 
Clebsch-Gordan coefficients. but we give them explicitly below so that there shall be no 

t These relations are obnined by reducing the triple product of imps rEIr @ A  to the lowlly symmetric irrep AI 
in IWO steps, r @I r 10 A and A EI A to AI.  The reality of the irreps simplifies the procedure which also involves 
symmetrized coupling coefficients and their permutational symmewics [IO]. 
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ambiguity. 

0 0 0 1  0 1 0 1  

U G ( G I ) = L  ( y  e) I J G ( ~ ~ ) = L  [ I 1 0 1  

0 0  I O  - 1 0 1 0  

& 1 0 - 1 0  0 0 0  

@(HI)=; 2 ( i1 :)' u G ( H ~ ) = &  [ -2 0 0 0  0 - 1 )  (8) 

4% 0 - 1  & 0 1 0 0  
1 0 0 0  

u G ( G 3 ) = L  [ 0 0  0 1 ) Uc(G4) [ 8 
- 1  1 

U G ( H 3 ) = L [ O  0 0  0 !2) 1 U G ( H 4 ) = & (  0 0 - 1 0  ," 1') 

uG(H5)=&[ -I i 1 0 1 0 0  .), 

0 1  0 1 -1  0 0 

- 1  0 0 0  2 0 1 0  

0 0 1  0 - 1 0  0 

2J? 0 -1 0 - 1  0 -2 0 
1 0 - 2 0  -1  0 

0 2 0 - 1  1 0 0 0  

- 1  0 0 0 0 1  

2.3. The effective Hamiltonian within an H state 

As for the G bases we define on symmetry grounds the following set of fifteen matrices: 

0 0 4 3 0 0  
0 0 4 0 2  -1 

0 2 0  

0 0 0 0 - &  
U H ( G 2 ) = L [  i o f  f 0 0 2 j JB 0 2  0 

-& 0 0 -; 
0 0 0 4 5 0  

I 
UH(G3) = - 

-2 2 
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O A O  0 0 

1 
UH(G4) = - 

2 

-2 0 0 0  0 
- 1 0 0  0 

UH(2H1) = - 

0 0 0 - 1  

0 1  0 0 0  
O A O  

UH(2H2) = - 

O O A O  

0 2 0  0 

UH(2H3) = - 

0 - A 0 0  

0 - 4 3 0 0  0 

0 0 x 3  

0 0 0 2 0  

UH(2H4) = - 

0 0  0 0 
O O A  0 0 
O A O  0 

-43. 0 

0 - 4 0  0 0  
- 4 0  0 5 0  
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0 0 0 0 - 4  
0 0 ~ 0 0  

1 

-4 $ 0 3 r 2 2 - JT ij 
. P o o o 0  0 1 0 0 0  

The effective Hamiltonian of an external perturbation acting within the orbital quintet may 
then be represented in a general way by adding to the vibronic Hamiltonian an operator 

4 5 

OH = aHUH(A)  + x 5 ' r U H ( G i )  + k K z H U H ( 2 H j )  + ~ , 4 ~ U ~ ( 4 H k )  
i = l  j=1 k=I 

which describes the effect that the perturbation would have in shifting or splitting the 
H electronic energy for the static, perfectly icosahedral environment when JT effects are 
ignored. The a H , P H s ,  yZHs and yHs  are functions of the components of the external 
perturbations and transform as A, G, H derived from j = 2 and H derived O-om j = 4 
respectively. 

3. Ham factors 

3.1. Cases with no multipliciry 

In the adiabatic approximation the wave function on the LAWS is written u ( r ,  Q)Q( Q ) ,  where 
U is the coupled electronic wave function, Q is the nuclear wave function, r represents all 
Lhe electronic coordinates and Q are the normal-mode coordinates. If V ( r )  is an operator 
in the electronic basis, then we form the ratio 

(/b'(Q)(u(r, Q)lV(r)lu(r.  Q))b(Q)dQ (+ Qo)lv(r)lu(r,  QoN (11) 

where u ( r ,  Qo) represents the uncoupled electronic state, and @(e) is normalized. This 
ratio is the Ham factor for the operator V ( r )  within the vibronic state lu(r, Q ) ) Q ( Q ) .  Its 
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value varies as a function of JT coupling strength; from unity in the limit of zero coupling, 
to some real number between 0 and 1 in the limit of strong coupling. V ( r )  is therefore 
seen to be quenched, and this effect is the result of averaging the operator over the vibronic 
ground state. 

In the case of strong coupling the electronic functions u(r ,  Q ) ,  the nuclear function 
@(e) and the operators V ( r )  are taken in the minimum of the LAPB. The epikernel principle 
[ 131 determines the symmetry in the minimum. Let E be the point group describing the 
symmetry in a particular minimum m. E is a subgroup of the icosahedral group and is 
also a maximal epikernel. This means that B is the maximal subgroup such that the totally 
symmetric irrep A, appears in the subduction of all A on the group E, i.e. ( A L E ~ A I ) ,  
Let N be the number of the equivalent minima m which have the same symmetry group 
E. At strong coupling the operator V couples only electronic states belonging to the same 
minimum and its expectation value is the same in all equivalent minima. In order to have a 
stable minimum and no further distortions, the electronic state in the minimum should be a 
singlet, i.e. it transforms according to the one-dimensional irrep A of the group E and A is 
not necessarily the totally symmetric i m p  A, of E. The irrep A is a component of r when 
the latter is subduced on the subgroup E, i.e. ( rJEsA) .  (For simplicity, we will omit the 
branching multiplicity which counts the number of times A appears in (FLE) as, for the 
cases considered in this paper, this multiplicity is one.) 

Hence in the minimum m, the electronic functions u(r,  Q) are the symmetry-adapted 
functions uf4(r, Q ,  m )  which transform as the irrep r in the icosahedral group and A in the 
subgroup G. They are linear combinations of the uncoupled electronic functions u s ( ,  Qo) 

J P Cullerne et a1 

(k = I .  2, ..., iri), 
U:(.. Q , m )  =xu[(.. Q o ) a d r m )  (12) 

k 

where the coefficients a k ( r m )  are identical with the eigenvectors ( a k ( m ) )  discussed in our 
earlier paper [9] and also form those columns a ( r m )  of the matrix subducing the irrep r 
onto the one-dimensional irrcp A. 

The tunnelling of the nuclear functions @( Q )  between the N minima restores the original 
icosahedral symmetry. It is the the transformation T = (Ti (mr)]  of dimension N which 
induces the singlet A in the minimum m into icosahedral vibronic states r. Our choice of 
basis is such that 

z(inr) = g a i ( r m )  (13) 

where the factors [I?] and N are due to the normalization used. Then, taking into account 
(12) and (13), and applying the Wiper-Eckart theorem and the orthogonality relations of 
Clebsch-Gordan coefficients (6) to equation ( I  I ) ,  we obtain the following result for the 
Ham factor K r ( A )  of the operator A in the electronic ground state r: 

(14) 
iri K r ( A )  = -Tr(A) .  
IAI 

The quantity &-(A) has the same value in all N equivalent minima of the LAPES and is 
proportional to the isastationay function in 1141 when the latter is taken in the minimum 
of the LAPES. It is invariant in both the icosahedral group and its subgroup E and is given 
by the expression 
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The sum on the right-hand side of equation (15) may be expressed in terms of factors of 
the form 

(FmlAh) = i ~ ( r m ) l + u ~ ( ~ h ) ~ ( r , n ) .  ( 16) 

They represent Clebsch-Gordan coefficients in a symmetry-adapted basis I>B, coupling 
the states in both the icosahedral group I and the subgroup B. Since the ground electronic 
state in the subgroup G is a singlet, the Clebsch-Gordan coefficients in equation (16) can 
be compared with the isoscalar factors in Racah factorization lemma [12]. 

3.2. Cases within and between tunnelling sublevels 

In the case of strong coupling it is also necessary to consider the effect of the electronic 
operator on the excited vibronic states which are close in energy. The Ham factor Kr,r(A) 
for the operator A within an excited vibronic state r’ and the uncoupled electronic state r 
is obtained by similar considerations and is given by the relation 

(17) 
irii Kr,r(A) = -&r(A) 
lA l  

where the invariant & - ( A )  has the form 

The mixing between the vibronic states r‘ and r” by the operator A may be 
characterized by the Ham factor 

where the invariant Tpr*r(A) has the form 

I r p r ( A )  = x ( r ‘ r ” m l A h ) ( r m l A h )  
A 

with 

( r ’ r”n lAh)  = [a (F ‘m) ]+Ur (Ah)a ( r”m)  

For these mixing elements, we do not find it useful to extract a symmetry coefficient to leave 
a reduction factor because the value of this factor would depend on the normalization of 
the original electronic coupling coefficients of section 2. What is important, however, is the 
relative magnitudes of the mixing elements and the matrix elements amongst the vibronic 
ground states. Bearing this in mind. we list all these mixing elements in the appendices 
so that they are immediately ready for use. We have nevertheless included equation (19) 
because firstly, we actually used it to calculate the mixing elements and secondly, we would 
like to show how the above considerations may be extended to cover all mixing possibilities. 

3.3. Cases with multiplicil); 

The cases with multiplicity involve the quintet H. Taking into account the parentage of 
H, ( J J b H ) ,  we write the tensor operators V’H in a symmetry adapted S0(3)>1 basis. 
Considering the ratios of matrix elements 
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and 

(/&(Q)(uJ'r(r, Q)lv,'Hlu'Lr(r, Q))$(Q)dQ (u:r(r, Qo)lv{HluTr(r, Qo)) (23) 

where J, J' = 2.4, v.,: repeat the same operations as in part 3.1, but now applied to 
the chain SO(3)>I>G. The Wigner-Eckart theorem is used in the group SO(3) which is 
simply reducible and hence there is no multiplicity. Then we can define two new sets of 
Ham factors which form a 2 x 2  matrix: 

(24) 

(25) 

They are given within a r' vibronic state and a r' uncoupled electronic state and r' = r in 
the ground state. In the latter case we shall omit for simplicity one of the subscripts r in 
the notation of Ham factors and the corresponding invariants. The invariants Z characterize 
the coupling in the SO(3) 313G chain and are given as follows: 

Zyr ( JH)  = E( r'm I J H h ) ( h  I JHh) (26) 

Zpr(JHIJ'H) = C(r ' ,nIJHh)(rmlJ 'Hh) (27) 

J P Cullerne er a1 

>/  

irii Kpr(JH)  = --Zpr(JH) 

Krcr(JH1J'H) = --Zrrr(JHIJ'H). 

H 
ir'i 
IAI 

i 

i 

Tne quantities (FmIJHh) are the Clebsch-Gordan coefficients in the symmetry-adapted 
S0(3)3I>G basis, defined by equation (16), which couple the singlet states in the minimum 
of LAPES. It is obvious that &(JHIJ'H) = Zr.r(J'HIJH) and hence Kpr(JHIJ'H) = 
Kr,r(J'HI JH). 

The use of group chains, as described here, can be applied to any group in so far as 
the repeating representations do not have a branching multiplicity, i.e. appear just once in 
the subduction of J onto the group under consideration. Otherwise a further intermediate 
group (or groups) must be found to distinguish between the components. It is particularly 
effective as it also allows the classification and labeling of the states and the operators. 
Group chains have been used for choosing a standard icosahedral basis [ 16, 17. IS], and for 
calculating Clebsch-Gordan coefficients and their symmetrized analogues [ 18, 19. 21. 221. 

Unlike in this study, Ceulemans and Fowler [I51 resolved the multiplicity in the quintet 
H without involving the spherical group, but they did use a chain through the spherical 
group in their work on the double-valued representations of the icosahedral group [22]. 

4. G @ g  

We can extract a lot of information about the vibronic system from the group theory, 
which will formulate everything in terms of parameters without actually calculating their 
numerical values. We can also extract information using numerical methods and use the 
group theory to check that the information is sensible. As far as possible we follow both 
procedures. In our earlier work [9 ] ,  we treated G @ g in this way and here summarize 
some of the account given previously in order to explain the basis of the present work. 
At strong coupling we were able to classify the low-lying vibronic states by considering 
tunnelling between the equivalent minima of the adiabatic potential. The lowest vibronic 
energy levels must have energies that are only slightly higher than the minimum energy 
on the LAPES, and that means they must nearly consist of a linear combination of ground- 
state harmonic oscillators (CSHO) centred at the minima. At strong coupling the LAPES 
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for G @ g exhibits five equivalent stable minima, and therefore the static vibronic ground 
state is fivefold degenerate. Tunnelling considerations split this static ground state into a 
G ground state and an A tunnelling sublevel. At strong coupling these low-lying vibronic 
states, A and G, will be relatively close together with respect to any extemal perturbations 
that may be applied. These vibronic states are well localized at the minima of the LAPES. 
The matrix elements of an operator within the combined vibronic state A @ G  may therefore 
be calculated as follows: Step 1: calculate the electronic G basis at each minimum. Step 
2: calculate the electronic expectation of the operator under consideration at each minimum 
(i.e. between the bases calculated in step 1). Step 3: construct an N x N diagonal matrix 
( N  is the number of minima on the LAPES; in the case of G @ g, N = 5) within the basis 
of the GSHOS, with the expectation values calculated in step 2 as the diagonal elements?. 
Step 4: calculate the expectation value of this diagonal matrix within the symmetry-adapted 
nuclear wave functions of the low-lying vibronic states (in the case of G @ g the nuclear 
wave functions belong to the icosahedral representation A @ G). As an example, we now 
apply the above steps to find the matrix representation of OG of equation (7) within the 
vibronic basis A @ G. The main details of this calculation may be found in [91, here we 
only present the results at the individual steps. We begin by considering the treatment for 
one of the operator partners of G, UG(Gl), since this will be the same for all the partners. 
The matrix form of such an operator within the electronic G quartet is UG(Gl) in (8): 

/ o  0 0 I \  

and following steps 1 and 2 the electronic expectation of this operator at the five minima is 

I Minl Min2 Min3 Min4 Min5 
3 3 

-?P I  YPI -;pz i P 2  Expectation I 0 

where PI = cos % and pz = cos %. On following step 3, the resulting diagonal matrix, 
which we will denote here as S2(G1), is an operator transforming as GI within the basis of 
the GSHOs. To implement step 4 we need the basis of nuclear wave functions of the low- 
lying vibronic states A @ G. These are given by the following orthogonal transformation 
on the basis of the five minima: 

where p3 = sin%, p4 = sin 5, the (a;) are the GSHOs centred at the minima {i} and 
the (W"), for A = A or G, compose the symmetry-adapted basis forming the tunnel-split 
vibronic states of A @ G. The expectation of CZ(G1) within the symmetry-adapted basis, 

t The diagonal form of the electronic expectation is a consequence of neglecting cross terms between wells 
because the overlaps ore small. 
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Consequently, in the strong-coupling limit, the Ham factor for U'(G1) within the vibronic 
G ground state is :, since in (30). the resulting matrix between the (lulp)] states is :x 
the original matrix (28) within the electronic basis, neglecting IT effects. The elements that 
represent a mixing of the A and G states, ('#AlC2(Gi)lulF) and (Qf/S2(Gi)]YA), are also 
given below. 

3 KG(G) = - 
4 

(31) 3 1  
(WAla(Gi)lCf) = (@lS2(Gi)lulA) = -- Vi = I ,  2, 3, 4 .  

4 4 5  

Similar calculations for an operator transforming as H yields a zero expectation within 
the electronic state at each minimum on the LAPES. Therefore, the strong-coupling result for 
an operator transforming as H amongst the lowest vibronic states of G @ g is 

KG(H) = 0 (32) 

with no non-zero mixing terms 

5. G @ h  

At strong coupling the LAPES for G @ h exhibits ten equivalent stable minima, and therefore 
the static vibronic ground state is tenfold degenerate. Tunnelling splitting separates this 
ground state into the direct sum of icosahedral subspaces. A @ G @ H. The symmetry- 
adapted bases for A @ G @ H ,  are the eigenstates of the matrix llSGhll [91. Diagonalization 
of this matrix, with a correct provision for the Berry phase, yields the symmetry-adapted 
states with correct ordering. In the case of G @  h ,  the G state is the lowest in energy with a 
quintet and then a singlet following in that order above it. Let us now consider the matrix 
representation of OG of equation (10) within the vibronic basis A@G@H. The main details 
of this calculation may be found in 191; here we only present the results at the individual 
steps. 

5.1. G operators within the G vibronic ground state and tunnelling sublevels 

We begin by considering the treatment for one of the operator partners of G, UG(GI), since 
this will be the same for all the partners. Following the steps set out for G @'g in section 4, 
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(*PI & 
(*Pi 0 
(WpI 0 
(*:I 0 

(or1 0 

(*;I 0 
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(*;I 0 

we have 

I*?) P,", I*?, I*:) l*3 I*;) I*?, IW,") I*;) 
0 0 0 0 0 0 0 0 I - 

3 4 3  
0 0 

0 
0 --- 

5 0 -- 
94% 

0 II 0 0 0 

0 0 0 5 
90& 

0 -II 0 - - 

W& 

9 0 ~  I ISm 9& 
5 

0 0 -  IS& 0 6 %  
5 1  0 _ _  
90 A 

0 - 0  5 
I S f i  

0 0 -  

0 0 0 -- I 0 0 
945 

0 -- IS& 

5 
184% 

5 0 -  0 &A 0 184% 
5 1  
z z  

2 0 -- 9& 
I 0 5 0 -  5 o x  ISJsi, 

0 0 2 7 5  O -xi? -& 0 0 0 I 

I 0 -- I 8 A  

0 
IS& 

0 0 0 0 0 0 -  
I S J 3  

0 

5 

I 2 0 -_ 0 -- 
9 A  

S 0 -  -* 184% 
5 

Action between the A and G states. As with the mixing elements in G 8 g, we do 
not find it useful to extract a symmetry coefficient to leave a reduction factor because the 
value of this factor would depend on the normalization of the original electronic coupling 
coefficients (8). The strong-coupling results for G @ h are 

Vi  = 1, 2, 3, 4. (35) 

Action between the G and H states. We list these mixing elements for the four partners 

1 
(YAlC2(Gi)lWF) = (@lD(Ci)lW*) = - 

3& 

of G in appendix A. 

5.2. H operators within the G vibronic ground state and tunnelling sublevels 

We now discuss similar considerations for an H operator. Once again we only choose one 
of the operator partners UG(HI) of H. The matrix for UG(HI) within the vibronic basis 



0 -1 0 0 0  O F  A 0 0  

0 0 5 0  18 o q o  0 0 

0 0 0 4  0 0 0  O Q  

0 o q o o - -  18 5 0  0 0 

0 7  J s o  0 0 0 5 0 0  18 

_- A 0  9 0 0 0  0 0 4 0  

0 0 o q o  0 0  18 

18 

0 0 0 0 0 0 0 0 0 

5 0 -- 
Action within the G ground state. This section of the above matrix is the 4 x 4 square 

between the G bases. By comparing this to the matrix for UG(H1) in (8), we see that i n  
the G vibronic ground state the action of UG(H1), i = I ,  2, 3, 4, 5, is reduced by a factor 
d .  Equation (14) yields, the same result of course. 

Action within the H state. This section of the matrix is the 5 x 5 square between the 
H bases. Once again, we find it convenient, having chosen a normalization, to represent the 
result as a reduction factor multiplying coupling coefficients. However, in this case, due to 
the multiplicity of H i m p s  in the symmetric square [H Q HI, one would expect the 5 x 5 
square between the H bases above to be a linear combination of UH(2HI) and UH(4H1). 
The coefficients of this linear combination may be easily calculated from equation (17). For 
the coefficient of UH(2H1), KHG(ZH)* with 

we have 

For the coefficient of UH(4H1), KH&H), with 

we have 

The action of an H operator within the H state is therefore conveniently written as 

:fi UH(2Hi) + 2F 9 14 UH(4Hi) Vi = 1, 2, 3, 4, 5. (40) 
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Action between the A and H states. The strong-coupling results for G @ h are 

Js 
(*AlC2(Hi)lYp) = (*:lC2(Hi)l*A) = - Vi = 1, 2 ,  3, 4, 5. (41) 

Action between the G and H states. We list these mixing elements for the five partners 
6 

of H in appendix A. 

6- H @ g  

At strong coupling the LAPES for H @ g  exhibits ten equivalent stable minima, and therefore 
the static vibronic ground state is tenfold degenerate. Tunnelling splitting separates this 
ground state into the direct sum of icosahedral subspaces, A @ G @ H .  The symmetry- 
adapted bases for A @ G  @ H are the eigenstates of the matrix [[SHgll [9] .  Diagonalization 
of this matrix, with a correct provision for the Berry phase, yields the symmetry-adapted 
states with correct ordering. In the case of H @ g ,  the H state is the lowest in energy with a 
quartet and then a singlet following in that order above it, Let us now consider the matrix 
representation of OH of equation (IO) within the vibronic basis A@G@H. The main details 
of this calculation may be found in [9 ] ;  here we only present the results at the individual 
steps. 

6.1. G operators within the H vibronic ground state and tunnelling sublevels 

We begin by considering the treatment for one of the partners of 0, UH(GI), since this will 
be the same for all the partners. Following the steps set out for G 8 g in section 4. we 
obtain the following matrix for UH(Gl) within the vibronic basis A @ G @ H of H @ g: 

IQ3 I W  I*:) IW  
0 0 0 

3& 
0 0 0 -  2 

9473 
0 -- 2 0  0 
2 0 -  2 0 -- 

94% 

2 - 

94% 

9473 
0 2 

O m  
0 5  2 0 0 

4 2 

2 
O Z  O T Z  

O w? 

943 O 943 

0 

0 -  
943 

0 

- 0 

0 0 2 

2 _- - 
Action within the G state. This section 

G bases. By comparing this to the matrix U‘ 

4 __  
9JT 

0 0 0 0 

5 943 0 0 0 4 - 2 

2 2 O x  O 9 4 3  

O Z  O G ?  
0 0 $& 0 0 

O 7m 737 

0 0 0 0 +& 

- 0 

0 2 2 

-4 I -4 2 0 

0 0 0 -4 I -4 1 TX 7% 

0 -- 
9m 

0 “I 0 -4 2 
9 m  

the matrix is the 4 x 4 square between the 
11) in (S), we see that the resultant operator 

acting within the G vibronic state is some multiple of UH(GI). Although this multiple 
depends on the normalization of the coupling coefficients in (9), we find it convenient, 
having chosen a normalization, to represent the result as a reduction factor on UH(G1). 
This reduction factor, KcH(G),  is easily calculated from equation (17); with 

&(G) = C(G. mlG, W H ,  mlG, A) = (42) 
A 
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we have 

(43) 

Action within the H ground state. This section of the above matrix is the 5 x 5 square 
between the H bases. By comparing this to the matrix UH(Gl) in (9), we see that in the H 
vibronic state the action of UH(Gi), i = 1, 2, 3, 4, is reduced by a factor a .  

Action between the A and G states. As with the mixing elements in G @ g ,  we do 
not find it useful to extract a symmetry coefficient to leave a reduction factor because the 
value of this factor would depend on the normalization of the original electronic coupling 
coefficients (9). The strong-coupling results for H @ g are 

Vi = I, 2, 3, 4. (44) 
2 

(*AlqGol*;) = (@ln(Gi)l*A) = - 
3 4 3  

Action between the G and H states. We list these mixing elements for the four partners 
of G in appendix B. 

6.2. H operators within the H vibronic ground state and tunnelling sublevels 

To discuss similar considerations for operators transforming as H. care has to be taken in 
specifying the parentage of the H basis. Following the remarks of subsection 3.3, we choose 
UH(2H1) and UH(4H1) from the two irreps 2H and 4H respectively. 

6.2.1. 2H oDerafors. The matrix for UH(2HI) within the vibronic basis A @ G @ H of 

Action within the G state. This section of the matrix is the 4 x 4  square between the G 
bases. By comparing this to the matrix for UG(Hl) in (8),  we see that the resultant operator 
acting within the G vibronic state is some multiple of UG(HI). As before, this multiple 
depends on the normalization of the coupling coefficients in (9), however for convenience 
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we represent the result as a reduction factor on U'(H1). This reduction factor, KGH(ZH), 
is easily calculated from equation (17); with 

Vm (45) 
5 1  

ZGH(ZH) = C ( G ,  mlH, A)(H. mPH, A) = -- 
i 3dn 

we have 

Action within the H ground state. This section of the matrix is the 5 x 5 square 
between the H bases. In this case, due to the multiplicity of H i m p s  in the symmetric 
square [H @ HI, one expects the 5 x 5 square between the H bases above to be a linear 
combination of UH(2HI) and UH(4HI). The coefficients of this linear combination may be 
easily calculated from equations (24) and (25). For the coefficient of UH(2HI), KH(~HIZH), 
with 

(47) 
2 z~(2H12H) = C ( H .  m12H. A)(H, m12H, A) = - 
I Vm 

A 

we have 

(48) 
5 2  2 
5 7  7 

K H ( ~ H ~ ~ H )  = - - = -. 

For the coefficient of UH(4HI), KH(4H[2H), with 

z~(4Hj2H)  = C ( H .  ml4H, h)(H. m12H. A) = - 'JS v m  (49) 21 A 

we have 

5 2 4 3  2d3 K H ( ~ H ~ ~ H )  = - - = - 
5 21 21 

The action of a 2H operator within the H vibronic state is therefore conveniently written as 

(51) 
2 2 4 3  -UH(2Hi) + - UH(4Hi) I 21 Vi = I ,  2, 3, 4, 5 .  

Action between the A and H states. The strong-coupling results for H @ g are 

Action between the G and H states. We list these mixing elements for the five partners 
of 2H in appendix B. 
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lW l Y 3  I W  l Y 3  
ifi 0 0 0 0 

0 0 -4 1 0 

0 -- 4 ‘  0 0 
7 3  

S J U  

0 $h 0 0 0 

4 1  
O j i T 4  0 0 0 

0 0 0 0 

0 $fi 0 0 0 

0 0 ;J?4 0 0 

0 0 $6 0 

0 0 0 0 +& 

Action within the H ground state This section of the matrix is the 5 x 5 square 
between the H bases. In this case, due to the multiplicity of H irreps in the symmetric 
square [H O HI, one expects the 5 x 5 square between the H bases above to be a linear 
combination of UH(2HI) and UH(4H1). The coefficients of this linear combination may be 
easily calculated from equations (2.4) and (25). For the coefficient of UH(2H1), K H ( ~ H ( ~ H ) ,  
with 

(55) 
7-45 z~(2H14H)  =&(4H12H) = - 
21 

we have 

(56) 
2 4 3  K H ( ~ H ~ ~ H )  = K H ( ~ H [ ~ H )  = -_ 
21 

For the coefficient of UH(4H1), K H ( ~ H ~ ~ H ) ,  with 
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we have 
5 10 IO K H ( ~ H ] ~ H )  = - - = - ,  
5 63 63 

The action of a 4H operator within the H vibronic state is therefore conveniently written as 

(5% 
IO 

UH(2Hi) + 63 UH(4Hi) Vi = 1, 2, 3, 4. 5 .  2 J J  - 
21 

Action between the A and H states. The strong-coupling results for H 8 g are 

(qAlS2(4Hi)[q,?) = (W~li2(4Hi)l'€'*) = - Vi = 1. 2, 3, 4, 5 .  (60) 

Action between the G and H states. We list these mixing elements for the five partners 
of 4H in appendix B. 

6.3. H operators within the H vibronic ground state. The matrix of Ham factors 

In our earlier work 191, we left an analysis of the Ham factors in H 8  g incomplete. Using 
the results above, we are now in the position to complete this work. The Ham factors for 
the H operator in H 8 g are indeed non-trivial as was mentioned in [9]. In fact, in place 
of the queries in  table 2 of [9], we require a matrix of Ham factors that relate the matrix 
elements of H operators within the H vibronic state to the original coupling coefficients of 
(9). This relation between matrix elements is 

K H ( ~ H ~ ~ H )  K H ( ~ H ~ ~ H )  ) = ( K H ( ~ H ~ ~ H )  K H ( ~ H ] ~ H )  
with 

10 
63 

K H ( ~ H ~ ~ H )  = - 2 4 3  
K H ( ~ H ~ ~ H )  = K H ( ~ H I ~ H )  = - 

2 
K H ( ~ H ~ ~ H )  - I 21 

7. Summary 

We have extended the calculation of Ham factors for the three icosahedral systems G 8 g, 
G @ h  and H 8 g  so as to allow for the fact that for strong coupling several vibronic multiplets 
come close to each other. We have also extended the definition of the Ham factor from a 
single number to a matrix to cover the case when one particular irreducible representation 
appears more than once in a symmetric square, and applied it to the case of H in H 8 H .  For 
these more complicated discussions it has been necessary to make extensive use of group 
theory, and the group-theoretical aspects have been expounded. 

In conclusion we should remark that strong-coupling studies such as these have proved 
their worth in the past, even though the actual physical systems are rarely very strongly 
coupled. The Ham factors have the virtue of being quantities that can be calculated for 
weak and strong coupling, and estimated by interpolation at intermediate coupling strengths 
where the actual calculation is very difficult. 

Appendix A. Non-zero mixing elements between G and H vibronic states for G 18 h 

Below. we tabulate the non-zero mixing elements between G and H vibronic states of the 
strongly coupled G 8 h interaction. The operator symmetry in the columns headed A 
appertains to the symmetry of the operator calculated between the G electronic state. For 
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A = H, however, we have a slight complication. The Kronecker product G @ H contains a 
multiplicity of two H irreps, so the matrices of mixing elements for operators transforming 
as H are linear combinations of matrices appertaining to the two linearly independent H 
irreps. In table A l ,  we list the elements the G partners, G1, G2, C3, G4, and H partncrs, 
H2, H3, H4, H5. The elements for the H partner H1, are listed in table A2. 

J P Cullerne er al 

Table AI 



A 
h 

H1 
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r l = c  r 2 = H  
YI M (Y;;lnw;jlY>) 
1 4 --AI9 
2 3 AI9  

I I 3  2 1  &I9 I 

A 
A 

I I 4  5 1  A I  9 I 

rl rz rI r2 
= G  = H  A = G  = H  

YI n N':lQ(~~)l'4'2) A YI YZ (Q:lQ(O~jlY2) 
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Table B2 
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